Pedagogical approaches focusing on stereotypical code solutions, known as programming plans, can increase problem-solving ability and motivate diverse learners. However, plan-focused pedagogies are rarely used beyond introductory programming. Our formative study (N=10 educators) showed that identifying plans is a tedious process. To advance plan-focused pedagogies in application-focused domains, we created an LLM-powered pipeline that automates the effortful parts of educators' plan identification process by providing use-case-driven program examples and candidate plans. In design workshops (N=7 educators), we identified design goals to maximize instructors' efficiency in plan identification by optimizing interaction with this LLM-generated content. Our resulting tool, PLAID, enables instructors to access a corpus of relevant programs to inspire plan identification, compare code snippets to assist plan refinement, and facilitates them in structuring code snippets into plans. We evaluated PLAID in a within-subjects user study (N=12 educators) and found that PLAID led to lower cognitive demand and increased productivity compared to the state-of-the-art. Educators found PLAID beneficial for generating instructional material. Thus, our findings suggest that human-in-the-loop approaches hold promise for supporting plan-focused pedagogies at scale.
翻译:暂无翻译