Diagnosing Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Furthermore, there is a high possibility of getting entangled with normal aging. We propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs using clinically-guided prototype learning. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. We then measure the similarities between latent clinical features and well-established prototypes, estimating a "pseudo" likelihood map. By considering this pseudo map as an enriched reference, we employ an estimating network to estimate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensible overview from two perspectives: clinical and morphological. During the inference, this estimated likelihood map served as a substitute over unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.
翻译:对阿尔茨海默氏病(AD)进行诊断是一个深思熟虑的过程,因为其固有的不可逆转性特征具有微妙和渐进的渐进性。这些特征使得从结构性脑成像(例如结构性MRI)扫描中进行AD生物标志识别具有相当的难度。此外,还很有可能与正常的衰老纠缠在一起。我们建议采用一种新的深层次学习方法,通过可氧化的AD Lilishish地图估计法(XADLiME),利用临床指导原型学习,对3D 的三维光谱进行自动建模。具体地说,我们在潜在临床特征的集群上建立一套地貌学学学特征模型,发现一个AD频谱。然后我们测量潜在的临床特征和成熟的原型之间的相似性,估计一个“假的”可能性地图。我们用一个估算网络来估计3D SMRI扫描的高度概率地图。此外,我们通过从两个角度揭示一个可理解的概览来解释这种可能性:临床和形态学特征,发现一个AD光谱的多光谱。我们测量中有效地解释了这一前景,同时提供一个可移动的可能性,在进行彻底的地图的扫描中提供可替代。