In this paper, we present a decentralized control approach based on a Nonlinear Model Predictive Control (NMPC) method that employs barrier certificates for safe navigation of multiple nonholonomic wheeled mobile robots in unknown environments with static and/or dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF. Since each robot does not have a priori knowledge about the obstacles and other robots, we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the Barrier Function (BF) only from the robot's LiDAR and odometry measurements. The DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different scenarios. The implementation results show the effectiveness of the NMPC-LBF method at ensuring safe navigation of the robots.
翻译:在本文中,我们介绍了一种基于非线性模型预测控制(NMPC)方法的分散控制方法,该方法使用屏障证书,用于在有静态和/或动态障碍的未知环境中安全导航多个非血压轮轮式移动机器人,这种方法将一个累积屏障功能(LBF)纳入NMPC设计,以保证安全的机器人导航,即防止机器人与其他机器人碰撞和障碍。我们称我们提议的控制方法为NMPC-LBF。由于每个机器人对障碍和其他机器人没有先验的知识,我们使用一个实时运行的深神经网络(DEPNN)来学习屏障函数(BFF),仅从机器人的LIDAR和odology测量中学习。DeepNNE受过培训,学习将安全和不安全区域分开的BF。我们在不同情况下应用了我们关于模拟和实际Turtbot3 Burger机器人的拟议方法。执行结果显示NMPC-LBF方法在确保机器人安全导航方面的有效性。