Drowsiness is a major concern for drivers and one of the leading causes of traffic accidents. Advances in Cognitive Neuroscience and Computer Science have enabled the detection of drivers' drowsiness by using Brain-Computer Interfaces (BCIs) and Machine Learning (ML). Nevertheless, several challenges remain open and should be faced. First, a comprehensive enough evaluation of drowsiness detection performance using a heterogeneous set of ML algorithms is missing in the literature. Last, it is needed to study the detection performance of scalable ML models suitable for groups of subjects and compare it with the individual models proposed in the literature. To improve these limitations, this work presents an intelligent framework that employs BCIs and features based on electroencephalography (EEG) for detecting drowsiness in driving scenarios. The SEED-VIG dataset is used to feed different ML regressors and three-class classifiers and then evaluate, analyze, and compare the best-performing models for individual subjects and groups of them. More in detail, regarding individual models, Random Forest (RF) obtained a 78% f1-score, improving the 58% obtained by models used in the literature such as Support Vector Machine (SVM). Concerning scalable models, RF reached a 79% f1-score, demonstrating the effectiveness of these approaches. The lessons learned can be summarized as follows: i) not only SVM but also other models not sufficiently explored in the literature are relevant for drowsiness detection, and ii) scalable approaches suitable for groups of subjects are effective to detect drowsiness, even when new subjects that are not included in the models training are evaluated.
翻译:潜伏是驱动者的一个主要关切,也是交通事故的一个主要原因。 认知神经科学和计算机科学的进步通过使用脑计算机界面和机器学习(ML)发现驱动者潜伏。 然而,一些挑战仍然开放,应该面对。 首先,文献中缺少使用一套混杂的 ML 算法对漂浮探测性表现进行足够全面的评估。 最后,需要研究适合对象群的可缩放 ML 模型的检测性能,并将其与文献中提议的单个模型进行比较。为了改进这些局限性,这项工作提出了一个智能框架,利用 BCI 和基于电感学(EEEG) 的功能来探测驱动场景中的潜伏性。 SECD-VIG 数据集用于向不同的 ML 递增和三等分级分类器提供不同的漂浮度检测性表现,然后评估、分析、比较单个对象和群体的最佳表现模型。 更详细而言,关于个体模型、随机森林(Rom Forlick) 获得了78% f1 的缩略图。 这项工作提供了一个智能框架的智能框架的智能框架的智能框架框架框架框架框架框架框架框架, 和功能模型的精细图解的精细的精细分析方法, 包括了58 % 模型的精选的精选的精选的精选的精选的精选的精选的精选的精选方法。