The tensor Ising model is a discrete exponential family used for modeling binary data on networks with not just pairwise, but higher-order dependencies. In this exponential family, the sufficient statistic is a multi-linear form of degree $p\ge 2$, designed to capture $p$-fold interactions between the binary variables sitting on the nodes of a network. A particularly useful class of tensor Ising models are the tensor Curie-Weiss models, where one assumes that all $p$-tuples of nodes interact with the same intensity. Computing the maximum likelihood estimator (MLE) is computationally cumbersome in this model, due to the presence of an inexplicit normalizing constant in the likelihood, for which the standard alternative is to use the maximum pseudolikelihood estimator (MPLE). Both the MLE and the MPLE are consistent estimators of the natural parameter, provided the latter lies strictly above a certain threshold, which is slightly below $\log 2$, and approaches $\log 2$ as $p$ increases. In this paper, we compute the Bahadur efficiencies of the MLE and the MPLE above the threshold, and derive the optimal sample size (number of nodes) needed for either of these tests to achieve significance. We show that the optimal sample size for the MPLE and the MLE agree if either $p=2$ or the null parameter is greater than or equal to $\log 2$. On the other hand, if $p\ge 3$ and the null parameter lies strictly between the threshold and $\log 2$, then the two differ for sufficiently large values of the alternative. In particular, for every fixed alternative above the threshold, the Bahadur asymptotic relative efficiency of the MLE with respect to the MPLE goes to $\infty$ as the null parameter approaches the threshold. We also provide graphical presentations of the exact numerical values of the theoretical optimal sample sizes in different settings.


翻译:Exward Ising 模型是一个离散的指数式家族, 用于在网络上建模二进制数据, 不仅对齐, 而且还有更高的顺序依赖。 在这个指数式家族中, 足够的统计数据是一种多线型的 $p\ge 2 美元, 用来捕捉位于网络节点上的二进制变量之间的双倍互动。 一个特别有用的 Exward Ising 模型类别是 Exronor Curie- Weiss 模型, 假设所有节点的美元- tuples 都与同样的强度互动。 计算这个模型中的最大概率估计值( MLE ), 严格地计算出最高概率的数值( MLE ), 精确值的数值为 $2 。 在本文中, 标准替代标准是使用最高伪值的值 。 MLEE 和 MPLE 的数值, 最优值为 。 最优值的值为 0. 2 美元 。

0
下载
关闭预览

相关内容

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的另一种方法,最大概似是1821年首先由德国数学家高斯(C. F. Gauss)提出,但是这个方法通常被归功于英国的统计学家罗纳德·费希尔(R. A. Fisher) 它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数theta有关, theta取值不同,则事件A发生的概率P(A/theta)也不同,当我们在一次试验中事件A发生了,则认为此时的theta值应是t的一切可能取值中使P(A/theta)达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
从零开始深度学习第8讲:利用Tensorflow搭建神经网络
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月12日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
从零开始深度学习第8讲:利用Tensorflow搭建神经网络
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员