Deep learning in molecular and materials sciences is limited by the lack of integration between applied science, artificial intelligence, and high-performance computing. Bottlenecks with respect to the amount of training data, the size and complexity of model architectures, and the scale of the compute infrastructure are all key factors limiting the scaling of deep learning for molecules and materials. Here, we present $\textit{LitMatter}$, a lightweight framework for scaling molecular deep learning methods. We train four graph neural network architectures on over 400 GPUs and investigate the scaling behavior of these methods. Depending on the model architecture, training time speedups up to $60\times$ are seen. Empirical neural scaling relations quantify the model-dependent scaling and enable optimal compute resource allocation and the identification of scalable molecular geometric deep learning model implementations.
翻译:分子和材料科学的深层次学习因应用科学、人工智能和高性能计算之间缺乏整合而受到限制。在培训数据数量、模型结构的大小和复杂程度以及计算基础设施的规模等方面的瓶颈都是限制分子和材料深层学习规模的关键因素。在这里,我们提出一个用于缩放分子深层学习方法的轻量级框架$\textit{LitMatter}$。我们为400多个GPU培训了四个图形神经网络结构,并调查了这些方法的缩放行为。根据模型结构,可以看到培训时间加快到60美元。实证神经缩放关系量化了依赖模型的缩放规模,并能够优化地计算资源分配和确定可缩放分子深深层学习模型的实施。