Satellite imagery is gaining popularity as a valuable tool to lower the impact on natural resources and increase profits for farmers. The purpose of this study is twofold: to mine the scientific literature for revealing the structure of this research domain and to investigate to what extent scientific results are able to reach a wider public. To fulfill these, respectively, a Web of Science and a Twitter dataset were retrieved and analysed. Regarding academic literature, different performances of the various countries were observed: the USA and China resulted as the leading actors, both in terms of published papers and employed researchers. Among the categorised keywords, "resolution", "Landsat", "yield", "wheat" and "multispectral" are the most used. Then, analysing the semantic network of the words used in the various abstracts, the different facets of the research in satellite remote sensing were detected. It emerged the importance of retrieving meteorological parameters through remote sensing and the broad use of vegetation indexes. As emerging topics, classification tasks for land use assessment and crop recognition stand out, together with the use of hyperspectral sensors. Regarding the interaction of academia with the public, the analysis showed that it is practically absent on Twitter: most of the activity therein is due to private companies advertising their business. Therefore, there is still a communication gap between academia and actors from other societal sectors.
翻译:作为降低对自然资源的影响和增加农民利润的宝贵工具,卫星图像越来越受欢迎。本研究的目的有两个方面:利用科学文献来揭示这一研究领域的结构,并调查科学成果在多大程度上能够惠及更广泛的公众。为了实现这些目的,分别检索和分析了一个科学网和一个推特数据集。关于学术文献,观察到了不同国家的不同表现:美国和中国在出版论文和聘用研究人员方面都成为主要行为者。在分类关键词“分辨率”、“大地卫星”、“Yield”、“yeheat”和“多光谱”中,使用得最多。然后,分析各种摘要中使用的词的语义网络,检测到卫星遥感研究的不同方面。通过遥感和广泛使用植被指数来重新利用气象参数的重要性。随着新出现的主题、土地使用评估和作物识别的分类任务以及超光谱传感器的使用,在学术界与公众的互动方面,分析显示它实际上没有在各种摘要中使用词义的词义网络,因此,对卫星遥感研究的不同方面进行了检测。通过遥感和广泛使用植被指数来检索气象参数的重要性。随着新出现的主题、土地使用评估和作物识别的分类任务,以及超光谱传感器的使用。关于学术界与公众之间的相互作用,分析显示,因此,从其他企业在推特上几乎不存在一种社会活动。