Road extraction is a process of automatically generating road maps mainly from satellite images. Existing models all target to generate roads from the scratch despite that a large quantity of road maps, though incomplete, are publicly available (e.g. those from OpenStreetMap) and can help with road extraction. In this paper, we propose to conduct road extraction based on satellite images and partial road maps, which is new. We then propose a two-branch Partial to Complete Network (P2CNet) for the task, which has two prominent components: Gated Self-Attention Module (GSAM) and Missing Part (MP) loss. GSAM leverages a channel-wise self-attention module and a gate module to capture long-range semantics, filter out useless information, and better fuse the features from two branches. MP loss is derived from the partial road maps, trying to give more attention to the road pixels that do not exist in partial road maps. Extensive experiments are conducted to demonstrate the effectiveness of our model, e.g. P2CNet achieves state-of-the-art performance with the IoU scores of 70.71% and 75.52%, respectively, on the SpaceNet and OSM datasets.


翻译:道路提取是一种主要从卫星图像中自动生成道路地图的过程。现有的模型都针对从头开始生成道路,尽管有大量不完整的公共道路地图可用(例如来自 OpenStreetMap 的地图),这些地图可以帮助道路提取。本文提出了一种基于卫星图像和部分道路地图进行道路提取的方法,这是新的思路。然后提出了一种两支 Partial to Complete Network(P2CNet)用于该任务,具有两个突出组件: Gated Self-Attention Module(GSAM)和 Missing Part(MP)损失。 GSAM 利用一个通道注意力模块和一个门模块来捕捉长距离语义,过滤掉无用信息,并更好地融合两个分支的特征。 MP 损失源自部分道路地图,试图更多地关注部分道路地图中不存在的道路像素。进行了大量实验,以证明我们的模型的有效性,例如,P2CNet 在 SpaceNet 和 OSM 数据集上分别达到了 70.71% 和 75.52% 的 IoU 得分,居于最佳水平。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【CVPR2021】重新思考BiSeNet让语义分割模型速度起飞
专知会员服务
32+阅读 · 2021年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【CVPR2021】重新思考BiSeNet让语义分割模型速度起飞
专知会员服务
32+阅读 · 2021年5月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员