We consider a type of constrained optimization problem, where the violation of a constraint leads to an irrevocable loss, such as breakage of a valuable experimental resource/platform or loss of human life. Such problems are referred to as safe optimization problems (SafeOPs). While SafeOPs have received attention in the machine learning community in recent years, there was little interest in the evolutionary computation (EC) community despite some early attempts between 2009 and 2011. Moreover, there is a lack of acceptable guidelines on how to benchmark different algorithms for SafeOPs, an area where the EC community has significant experience in. Driven by the need for more efficient algorithms and benchmark guidelines for SafeOPs, the objective of this paper is to reignite the interest of this problem class in the EC community. To achieve this we (i) provide a formal definition of SafeOPs and contrast it to other types of optimization problems that the EC community is familiar with, (ii) investigate the impact of key SafeOP parameters on the performance of selected safe optimization algorithms, (iii) benchmark EC against state-of-the-art safe optimization algorithms from the machine learning community, and (iv) provide an open-source Python framework to replicate and extend our work.
翻译:我们考虑的是某种限制优化问题,因为违反限制会导致不可挽回的损失,例如宝贵的实验资源/平台断裂或人类生命丧失,这些问题被称为安全优化问题(安全保护行动)。近年来,虽然安全保护行动在机器学习界受到关注,但尽管在2009年至2011年期间进行了一些早期尝试,对渐进计算(EC)社区的兴趣不大,尽管在2009年至2011年期间进行了一些早期尝试,但对于演化计算(EC)社区没有多大兴趣。此外,在如何为安全保护行动的不同算法制定基准方面,缺乏可接受的准则,因为需要更有效的计算方法和安全保护行动基准准则,因此,本文件的目标是重新激发欧盟委员会社区这一问题类别的利益。为了实现这一点,我们(一) 提供一个安全保护行动的正式定义,并将它与欧盟委员会社区熟悉的其他类型的优化问题进行比较,(二) 调查安全保护行动关键参数对选定安全优化算法绩效的影响,(三) 对照来自机器学习界的州级安全优化算法和基准,以及(四) 提供开放源框架,以便复制我们的工作。