Knowledge of search-landscape features of BlackBox Optimization (BBO) problems offers valuable information in light of the Algorithm Selection and/or Configuration problems. Exploratory Landscape Analysis (ELA) models have gained success in identifying predefined human-derived features and in facilitating portfolio selectors to address those challenges. Unlike ELA approaches, the current study proposes to transform the identification problem into an image recognition problem, with a potential to detect conception-free, machine-driven landscape features. To this end, we introduce the notion of Landscape Images, which enables us to generate imagery instances per a benchmark function, and then target the classification challenge over a diverse generalized dataset of functions. We address it as a supervised multi-class image recognition problem and apply basic artificial neural network models to solve it. The efficacy of our approach is numerically validated on the noise free BBOB and IOHprofiler benchmarking suites. This evident successful learning is another step toward automated feature extraction and local structure deduction of BBO problems. By using this definition of landscape images, and by capitalizing on existing capabilities of image recognition algorithms, we foresee the construction of an ImageNet-like library of functions for training generalized detectors that rely on machine-driven features.
翻译:BlackBox最佳化(BBO)问题的搜索-景观知识特征(BBO)问题(BBO)问题,根据Alogorithm 选择和/或配置问题,提供了宝贵的信息。探索景观分析(ELA)模型在确定预先定义的人造特征和帮助组合选择者应对这些挑战方面取得了成功。与ELA方法不同,本研究建议将识别问题转化为图像识别问题,有可能发现无概念、机械驱动的景观特征。为此,我们引入了景观图像概念,使我们能够根据基准功能生成图像实例,然后将分类挑战针对不同的通用功能数据集。我们把它作为监督的多级图像识别问题加以解决,并应用基本的人工神经网络模型来解决这一问题。我们的方法的效力在数字上被验证为无噪音BBOB和IOHPuforir基准套件。这一明显的成功学习是向自动特征提取和当地结构减少BBO问题迈出的又一步。通过使用这种景观图像定义和利用现有的图像识别算法能力,我们预见到一个通用的图像网络探测器功能的构建将依赖一个通用的图像探测器的图书馆。