Studies on self-supervised visual representation learning (SSL) improve encoder backbones to discriminate training samples without labels. While CNN encoders via SSL achieve comparable recognition performance to those via supervised learning, their network attention is under-explored for further improvement. Motivated by the transformers that explore visual attention effectively in recognition scenarios, we propose a CNN Attention REvitalization (CARE) framework to train attentive CNN encoders guided by transformers in SSL. The proposed CARE framework consists of a CNN stream (C-stream) and a transformer stream (T-stream), where each stream contains two branches. C-stream follows an existing SSL framework with two CNN encoders, two projectors, and a predictor. T-stream contains two transformers, two projectors, and a predictor. T-stream connects to CNN encoders and is in parallel to the remaining C-Stream. During training, we perform SSL in both streams simultaneously and use the T-stream output to supervise C-stream. The features from CNN encoders are modulated in T-stream for visual attention enhancement and become suitable for the SSL scenario. We use these modulated features to supervise C-stream for learning attentive CNN encoders. To this end, we revitalize CNN attention by using transformers as guidance. Experiments on several standard visual recognition benchmarks, including image classification, object detection, and semantic segmentation, show that the proposed CARE framework improves CNN encoder backbones to the state-of-the-art performance.


翻译:在自我监督的视觉代表学习(SSL)的研究中,自我监督的视觉代表学习(SSL)改进了编码主干网,以区别没有标签的培训样本。尽管通过SSL的CNN编码员通过SSL实现了与那些通过监管的学习获得可比的识别性能,但其网络关注度的探索还没有得到进一步的改善。受在认知情景中有效探索视觉关注的变压器的激励,我们建议CNN注意的视觉代表学习(CARE)框架,以培训由变压器指导的变压器指导的CNN成色器。拟议的CARE框架包括CNN流(C流)和变压器(T流),每条流都包含两个分支。CRSL遵循现有的SL框架,由两个CNNC、两个投影机、两个投影机和预测器组成。T-RISL的变压框架包含两个变压的SL框架,这些变压的SLSL的功能通过SLSL的图像演示到SL的图像定位定位定位模型,这些变压的SLSL 将SL 演示到SLSL 演示的图像的图像定位定位定位模型, 将这些变压到SL 演示到SLSLSLSLSL 的演示到SLSL 的图像的演示到SLD的图像的图像的图像的图像的校。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员