Medical image analysis typically includes several tasks such as enhancement, segmentation, and classification. Traditionally, these tasks are implemented using separate deep learning models for separate tasks, which is not efficient because it involves unnecessary training repetitions, demands greater computational resources, and requires a relatively large amount of labeled data. In this paper, we propose a multi-task training approach for medical image analysis, where individual tasks are fine-tuned simultaneously through relevant knowledge transfer using a unified modality-specific feature representation (UMS-Rep). We explore different fine-tuning strategies to demonstrate the impact of the strategy on the performance of target medical image tasks. We experiment with different visual tasks (e.g., image denoising, segmentation, and classification) to highlight the advantages offered with our approach for two imaging modalities, chest X-ray and Doppler echocardiography. Our results demonstrate that the proposed approach reduces the overall demand for computational resources and improves target task generalization and performance. Further, our results prove that the performance of target tasks in medical images is highly influenced by the utilized fine-tuning strategy.
翻译:医疗图像分析通常包括若干任务,如增强、分割和分类等。传统上,这些任务的执行采用不同的深层次学习模式,分别执行不同的任务,因为涉及不必要的培训重复,要求更多的计算资源,需要相对较多的标签数据。在本文件中,我们建议采用多任务培训方法进行医学图像分析,其中个别任务同时通过使用统一模式特定特征表(UMS-Rep)进行相关知识转让进行微调。我们探索不同的微调战略,以显示战略对目标医疗图像任务绩效的影响。我们试验不同的视觉任务(例如图像脱色、分解和分类),以突出我们在胸部X射线和多普勒回心动学两种成像模式方法上提供的优势。我们的结果显示,拟议的方法减少了对计算资源的总体需求,改进了目标任务的一般化和性能。此外,我们的结果证明,医疗图像中目标任务的业绩受到使用的微调战略的高度影响。