Federated Learning (FL) coordinates with numerous heterogeneous devices to collaboratively train a shared model while preserving user privacy. Despite its multiple advantages, FL faces new challenges. One challenge arises when devices drop out of the training process beyond the control of the central server. In this case, the convergence of popular FL algorithms such as FedAvg is severely influenced by the straggling devices. To tackle this challenge, we study federated learning algorithms under arbitrary device unavailability and propose an algorithm named Memory-augmented Impatient Federated Averaging (MIFA). Our algorithm efficiently avoids excessive latency induced by inactive devices, and corrects the gradient bias using the memorized latest updates from the devices. We prove that MIFA achieves minimax optimal convergence rates on non-i.i.d. data for both strongly convex and non-convex smooth functions. We also provide an explicit characterization of the improvement over baseline algorithms through a case study, and validate the results by numerical experiments on real-world datasets.
翻译:联邦学习联盟(FL) 与众多不同的设备协调, 以合作训练一个共享模式,同时保护用户隐私。尽管有多种优势,FL 仍面临新的挑战。 当设备退出培训过程而超出中央服务器的控制范围时,就会遇到一个挑战。 在本案中, FedAvg 等受欢迎的FL算法的趋同受到悬浮装置的严重影响。 为了应对这一挑战, 我们研究在无法获得任意设备的情况下的联结学习算法, 并提出一个名为“内存- 调控- Immmented Federal Average ” 的算法。 我们的算法有效地避免了非活动装置引起的过度拉动, 并用这些装置的记忆化最新更新来纠正梯度偏差。 我们证明, MIFA 在非i. i. d. 上实现了最小型的最大趋同率。 我们还通过案例研究对基线算法的改进进行明确定性, 并通过真实世界数据集的数字实验来验证结果 。