Analog computing is attractive compared to digital computing due to its potential for achieving higher computational density and higher energy efficiency. However, unlike digital circuits, conventional analog computing circuits cannot be easily mapped across different process nodes due to differences in transistor biasing regimes, temperature variations and limited dynamic range. In this work, we generalize the previously reported margin-propagation-based analog computing framework for designing novel \textit{shape-based analog computing} (S-AC) circuits that can be easily cross-mapped across different process nodes. Similar to digital designs S-AC designs can also be scaled for precision, speed, and power. As a proof-of-concept, we show several examples of S-AC circuits implementing mathematical functions that are commonly used in machine learning (ML) architectures. Using circuit simulations we demonstrate that the circuit input/output characteristics remain robust when mapped from a planar CMOS 180nm process to a FinFET 7nm process. Also, using benchmark datasets we demonstrate that the classification accuracy of a S-AC based neural network remains robust when mapped across the two processes and to changes in temperature.


翻译:与数字计算相比,模拟计算具有吸引力,因为它具有实现更高计算密度和更高能效的潜力。然而,与数字电路不同,传统的模拟计算电路无法轻易地在不同的流程节点上绘制。然而,由于晶体偏向制度、温度变化和有限的动态范围的差异,传统模拟计算电路无法轻易地在不同流程节点上绘制。在这项工作中,我们推广了先前报告的基于边际的模拟计算框架,用于设计新的ctextit{shape-类模拟计算}(S-AC)电路,这些电路可以很容易地跨过不同的流程节点。与数字设计S-AC设计相类似,S-AC设计也可以根据精确度、速度和功率进行缩放。作为概念的证明,我们展示了在机器学习(ML)结构中常用的S-AC电路功能的几个实例。我们使用电路模拟来证明,从Planar CMOS 180nm 进程到 FinFET 7nm进程绘图时,电路路/ 输出特性仍然很稳健。此外,我们使用基准数据集表明,在两个进程和温度变化中绘制时,基于S-AC神经网络的分类精准度网络的精准。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员