Belief function theory, a formal framework for uncertainty analysis and multiple evidence fusion, has made significant contributions in the medical domain, especially since the development of deep learning. Medical image segmentation with belief function theory has shown significant benefits in clinical diagnosis and medical image research. In this paper, we provide a review of medical image segmentation methods using belief function theory. We classify the methods according to the fusion step and explain how information with uncertainty or imprecision is modeled and fused with belief function theory. In addition, we discuss the challenges and limitations of present belief function-based medical image segmentation and propose orientations for future research. Future research could investigate both belief function theory and deep learning to achieve more promising and reliable segmentation results.
翻译:信仰功能理论是不确定性分析和多重证据融合的正式框架,它在医学领域作出了重要贡献,特别是自深层次学习以来。医学形象分解与信仰功能理论在临床诊断和医学图像研究方面显示出重大效益。在本文中,我们利用信仰功能理论对医学图像分解方法进行审查。我们根据融合步骤对方法进行分类,并解释不确定或不精确信息如何建模,如何与信仰功能理论相结合。此外,我们讨论了目前基于信仰功能的医疗形象分解的挑战和局限性,并为未来研究提出方向。未来研究可以调查信仰功能理论和深层次学习,以取得更有希望和可靠的分解结果。