Complex scientific models where the likelihood cannot be evaluated present a challenge for statistical inference. Over the past two decades, a wide range of algorithms have been proposed for learning parameters in computationally feasible ways, often under the heading of approximate Bayesian computation or likelihood-free inference. There is, however, no consensus on how to rigorously evaluate the performance of these algorithms. Here, we argue for scoring algorithms by the mean squared error in estimating expectations of functions with respect to the posterior. We show that score implies common alternatives, including the acceptance rate and effective sample size, as limiting special cases. We then derive asymptotically optimal distributions for choosing or sampling discrete or continuous simulation parameters, respectively. Our recommendations differ significantly from guidelines based on alternative scores outside of their region of validity. As an application, we show sequential Monte Carlo in this context can be made more accurate with no new samples by accepting particles from all rounds.


翻译:无法评估这种可能性的复杂科学模型对统计推理提出了挑战。在过去二十年中,提出了多种计算可行的方法学习参数的多种算法,通常在大约贝叶斯计算或无可能性推理的标题下进行。然而,对于如何严格评估这些算法的性能,没有达成共识。在这里,我们主张在估计后台功能的预期值时,采用平均的平方差来评分算法。我们表明,得分意味着共同的替代方法,包括接受率和有效样本大小,以限制特殊情况。然后,我们分别从微乎其微的最佳分布中选择或取样离散或连续的模拟参数。我们的建议与基于其有效区域以外的替代分数的准则有很大不同。作为一种应用,我们通过接受所有回合的粒子来显示连续的蒙特卡洛在这种背景下的评分法会更加准确。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
102+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员