We experimentally compare simple physics-based vs. data-driven neural-network-based models for offline training of programmable photonic chips using Mach-Zehnder interferometer meshes. The neural-network model outperforms physics-based models for a chip with thermal crosstalk, yielding increased testing accuracy.
翻译:我们试验性地比较了利用马赫-泽恩干涉仪贝壳对可编程摄影芯片进行离线培训的简单物理模型和数据驱动神经网络模型。神经网络模型优于以物理模型为制成的热对讲芯片模型,提高了测试的准确性。