On-demand peer-to-peer ride-sharing services provide flexible mobility options, and are expected to alleviate congestion by sharing empty car seats. An efficient matching algorithm is essential to the success of a ride-sharing system. The matching problem is related to the well-known dial-a-ride problem, which also tries to find the optimal pickup and delivery sequence for a given set of passengers. In this paper, we propose an efficient dynamic tree algorithm to solve the on-demand peer-to-peer ride-sharing matching problem. The dynamic tree algorithm benefits from given ride-sharing driver schedules, and provides satisfactory runtime performances. In addition, an efficient pre-processing procedure to select candidate passenger requests is proposed, which further improves the algorithm performance. Numerical experiments conducted in a small network show that the dynamic tree algorithm reaches the same objective function values of the exact algorithm, but with shorter runtimes. Furthermore, the proposed method is applied to a larger size problem. Results show that the spatial distribution of ride-sharing participants influences the algorithm performance. Sensitivity analysis confirms that the most critical ride-sharing matching constraints are the excess travel times. The network analysis suggests that small vehicle capacities do not guarantee overall vehicle-kilometer travel savings.
翻译:按需同行搭便车共享服务提供灵活的流动选项,预计通过共享空座来缓解拥堵现象。 高效的匹配算法对于搭车共享系统的成功至关重要。 匹配问题与众所周知的拨号车问题有关, 这个问题也与已知的拨号车问题有关, 后者也试图为特定一组乘客找到最佳搭接和交付顺序。 在本文中, 我们提出一个高效的动态树算法, 以解决按需同行搭车共享匹配问题。 动态树算法从所给搭车司机的日程安排中获益, 并提供了令人满意的运行性能。 此外, 提出了一个高效的预处理程序, 用于选择候选乘客请求, 从而进一步提高了算法的性能。 在小型网络中进行的数字实验显示, 动态树算法达到了精确算法的同样客观功能值, 但运行时间较短。 此外, 拟议的方法被用于解决更大的问题。 结果显示, 搭车参与者的空间分布会影响算法的性能。 感应力分析证实, 最关键的搭车匹配限制是旅行时间过长。 网络分析显示, 小车辆能力不会保证小车辆的节能能保证旅行储蓄。