Recent progress in (semi-)streaming algorithms for monotone submodular function maximization has led to tight results for a simple cardinality constraint. However, current techniques fail to give a similar understanding for natural generalizations such as matroid and matching constraints. This paper aims at closing this gap. For a single matroid of rank $k$ (i.e., any solution has cardinality at most $k$), our main results are: $\bullet$ A single-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of 0.3178. $\bullet$ A multi-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of $(1-1/e - \varepsilon)$ by taking constant number of passes over the stream. This improves on the previously best approximation guarantees of 1/4 and 1/2 for single-pass and multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in that any algorithm with a better guarantee than 1/2 must make several passes through the stream and any algorithm that beats our guarantee $1-1/e$ must make linearly many passes. For the problem of maximizing a monotone submodular function subject to a bipartite matching constraint (which is a special case of matroid intersection), we show that it is not possible to obtain better than 0.3715-approximation in a single pass, which improves over a recent inapproximability of 0.522 for this problem. Furthermore, given a plausible assumption, our inapproximability result improves to $1/3 \approx 0.333$.
翻译:单色调子函数最大化( 半色) 流式算法最近的进展( 半色) 单色调子函数最大化( k) 导致简单基质限制的严格结果 。 但是, 目前的技术无法给诸如 matilid 和 匹配 限制等自然概括化带来类似的理解 。 本文旨在缩小这一差距 。 对于一个单色的美元( 即, 任何解决方案以最多美元为基值) 的单色33美元 流式算法, 我们的主要结果是 : $\ bulllet$ 单色流式算法, 使用 $Uplittilde{ O} (k), 并实现0. 3178 美元 的近似保证 。 $\ bullet$\ bullet $ 多频流式算法, 使用 $\ bloaddildalde{ O} (k), 并实现 $ 1/2 的近似保证 $( e- eqolor) ro) 的近似值保证 。, 将多少个双色算算法的比 的双色算法更好。 显示一个比一流/ 的双色 。 越轨法要好。