The organization of fog devices into fog colonies has reduced the complexity management of fog domains. One of the main influencing factors on this complexity is the large number of devices, i.e. the high scale level of the infrastructure. Fog colonies are subsets of fog devices that are managed independently from the other colonies. Thus, the number of devices involved in the management of a colony is much smaller. Previous studies have evaluated the influence of the fog colony layout on system performance metrics. We propose to use a hierarchical clustering as the base definition of the fog colony layout of the fog infrastructure. The dendrogram obtained from this hierarchical clustering includes all the colony candidates. A genetic algorithm is in charge of selecting the subset of colony candidates that optimizes the two performance metrics under study: the network communication time between users and applications, and the execution time of the algorithms that manage internally the placement of the applications in each colony. We implemented the NSGA-II, a common multi-objective approach for GAs, to evaluate our proposal. The results show that a meta-heuristic such as a GA improves the performance metrics by defining the fog colony layout through the use of the dendrogram. Nine different experiment scenarios, varying the number of applications and fog devices, were studied. In the worst of the cases, 137 generations were enough to the results of the GA dominated the solutions obtained with two control algorithms. The number of genetic solutions and their homogeneous distribution in the Pareto front were also satisfactory.


翻译:将雾器组织成雾室减少了雾域的复杂管理。 造成这种复杂程度的主要因素之一是大量设备,即基础设施规模庞大。 雾器区是独立于其他聚居区管理的雾装置的子集。 因此,管理聚居区所涉及的设备数量要小得多。 以前的研究评估了雾器区布局对系统性能衡量标准的影响。 我们提议使用等级集群作为雾器区布局的基础定义雾区布局。 从这一等级集群中获得的登德罗格拉姆包括了所有殖民地候选人。 遗传算法负责选择一组殖民地候选人,以优化正在研究的两种性能衡量标准:用户和应用程序之间的网络通信时间,以及内部管理每个聚居地应用程序配置的算法时间。 我们实施了NSGA-II,这是GA-II的一个共同的多目标方法,用以评价我们的提案。 结果表明,从GA获得的元性能测量仪式,通过使用最差的硬度度度度度模型来界定雾室群落的布局。 使用最差的硬度度模型中,有两种不同的实验情景: 使用最差的GA型的GA型模型和最差的模型应用。 在GA型的模型中获得了两个不同的情况中, 。 在GA的模型中获得了两个不同的实验性能的模型中, 的模型的模型的模型的模型的模型的模型中获得了两个应用结果。

0
下载
关闭预览

相关内容

层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
42+阅读 · 2020年12月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
42+阅读 · 2020年12月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员