The advent of Cloud Computing enabled the proliferation of IoT applications for smart environments. However, the distance of these resources makes them unsuitable for delay-sensitive applications. Hence, Fog Computing has emerged to provide such capabilities in proximity to end devices through distributed resources. These limited resources can collaborate to serve distributed IoT application workflows using the concept of stateless micro Fog service replicas, which provides resiliency and maintains service availability in the face of failures. Load balancing supports this collaboration by optimally assigning workloads to appropriate services, i.e., distributing the load among Fog nodes to fairly utilize compute and network resources and minimize execution delays. In this paper, we propose using ELECTRE, a Multi-Criteria Decision Analysis (MCDA) approach, to efficiently balance the load in Fog environments. We considered multiple objectives to make service selection decisions, including compute and network load information. We evaluate our approach in a realistic unbalanced topological setup with heterogeneous workload requirements. To the best of our knowledge, this is the first time ELECTRE-based methods are used to balance the load in Fog environments. Through simulations, we compared the performance of our proposed approach with traditional baseline methods that are commonly used in practice, namely random, Round-Robin, nearest node, and fastest service selection algorithms. In terms of the overall system performance, our approach outperforms these methods with up to 67% improvement.
翻译:Cloud Economic的出现使IOT应用在智能环境中扩散。然而,这些资源的距离使得它们不适合延迟敏感应用。因此,Fog Econter已经出现,以便通过分配资源,在接近终端设备的地方提供这种能力。这些有限的资源可以合作利用无国籍微雾服务复制品的概念,为分布式IOT应用工作流程服务,提供耐应性,并在出现故障时维持服务供应。我们用一个现实的不平衡的表层设置来评估我们的方法,在工作量要求各不相同的情况下,我们用最优的方式将工作量分配给适当的服务,即将工作量分配给Fog节点,以公平利用计算和网络资源,并尽可能减少执行延误。在本文件中,我们提议使用ELECTRE,即多功能决定分析(MCDA)方法,以有效平衡Fog环境的负荷。我们考虑多种目标来做出服务选择选择决定,包括计算和网络负荷信息。我们评估我们的方法在现实的、不均匀的地形结构设置中,这是我们第一次采用基于ELEECRE的方法来平衡温室气体环境中的负荷。我们采用的方法,通过模拟,即采用最接近于最接近的改进方法,我们采用的是采用最接近的逻辑选择方法,即采用最接近的方法。我们所采用的最接近于最接近于最接近于最接近的方法。