This paper presents a research study focused on uncovering the hidden population distribution from the viewpoint of a variational non-Bayesian approach. It asserts that if the hidden probability density function (PDF) has continuous partial derivatives of at least half the dimension's order, it can be perfectly reconstructed from a stationary ergodic process: First, we establish that if the PDF belongs to the Wiener algebra, its canonical ensemble form is uniquely determined through the Fr\'echet differentiation of the Kullback-Leibler divergence, aiming to minimize their cross-entropy. Second, we utilize the result that the differentiability of the PDF implies its membership in the Wiener algebra. Third, as the energy function of the canonical ensemble is defined as a series, the problem transforms into finding solutions to the equations of analytic series for the coefficients in the energy function. Naturally, through the use of truncated polynomial series and by demonstrating the convergence of partial sums of the energy function, we ensure the efficiency of approximation with a finite number of data points. Finally, through numerical experiments, we approximate the PDF from a random sample obtained from a bivariate normal distribution and also provide approximations for the mean and covariance from the PDF. This study substantiates the excellence of its results and their practical applicability.
翻译:暂无翻译