Frank-Wolfe methods are popular for optimization over a polytope. One of the reasons is because they do not need projection onto the polytope but only linear optimization over it. To understand its complexity, Lacoste-Julien and Jaggi introduced a condition number for polytopes and showed linear convergence for several variations of the method. The actual running time can still be exponential in the worst case (when the condition number is exponential). We study the smoothed complexity of the condition number, namely the condition number of small random perturbations of the input polytope and show that it is polynomial for any simplex and exponential for general polytopes. Our results also apply to other condition measures of polytopes that have been proposed for the analysis of Frank-Wolfe methods: vertex-facet distance (Beck and Shtern) and facial distance (Pe\~na and Rodr\'iguez). Our argument for polytopes is a refinement of an argument that we develop to study the conditioning of random matrices. The basic argument shows that for $c>1$ a $d$-by-$n$ random Gaussian matrix with $n \geq cd$ has a $d$-by-$d$ submatrix with minimum singular value that is exponentially small with high probability. This has consequences on results about the robust uniqueness of tensor decompositions.
翻译:Frank- Wolfe 方法在多面体上最受欢迎, 其原因之一是它们不需要投影到多面体上, 而只是线性优化。 为了理解其复杂性, Lacoste- Juli 和 Jaggi 引入了多面体的条件编号, 并展示了该方法的若干变异的线性趋同。 实际运行时间在最坏的情况下仍然可以指数化( 条件号是指数化的 ) 。 我们研究的是条件编号的平滑复杂性, 即输入多面体的小随机扰动的状态, 即输入多面体的小随机扰动数量, 并显示对于任何简单的多面体体和一般多面体的指数性来说, 它是多元的。 我们的结果还适用于为分析 Frank- Wolfe 方法而提议的其他多面体体体质度条件计量: 顶面距离( 贝克和施特尔特) 和面部距离( 皮尔纳和罗德里格斯) 。 我们对多面的论证是我们研究独立基质质质质质质质质质质质质质质质质质质质质的调整的论证。 基本论证表明, $ >> 1美元比美元- 美元- 美元每美元这一硬值为美元的最小值为美元的直方基质值, 的直方值为美元, 的直基质值为美元, 和正基质值为正基质值的概率基质值为美元。