Folklore suggests that policy gradient can be more robust to misspecification than its relative, approximate policy iteration. This paper studies the case of state-aggregation, where the state space is partitioned and either the policy or value function approximation is held constant over partitions. This paper shows a policy gradient method converges to a policy whose regret per-period is bounded by $\epsilon$, the largest difference between two elements of the state-action value function belonging to a common partition. With the same representation, both approximate policy iteration and approximate value iteration can produce policies whose per-period regret scales as $\epsilon/(1-\gamma)$, where $\gamma$ is a discount factor. Theoretical results synthesize recent analysis of policy gradient methods with insights of Van Roy (2006) into the critical role of state-relevance weights in approximate dynamic programming.
翻译:民俗认为,政策梯度比其相对的、 近似的政策迭代更强, 比其相对的、 近似的政策迭代更强。 本文研究了国家合并的情况, 国家空间被分割, 政策或价值函数近似被维持在分割区之上。 本文显示了一种政策梯度方法, 政策梯度方法与每期遗憾被美元( epsilon $) 约束的政策相吻合, 美元是属于共同分割区的国家行动价值函数的两个要素之间的最大差异。 以同样的代表方式, 政策迭代和近似值迭代可以产生政策, 其每期遗憾比额表为 $\ epsilon/ (1-\ gamma) $( $\ gamma), 折价系数为$\ gamma 。 理论结果将最近的政策梯度方法分析与Van Roy(2006年) 的见解综合了政策梯度加权在近似动态方案规划中的关键作用。