Deep hashing has shown promising performance in large-scale image retrieval. However, latent codes extracted by Deep Neural Networks (DNNs) will inevitably lose semantic information during the binarization process, which damages the retrieval accuracy and makes it challenging. Although many existing approaches perform regularization to alleviate quantization errors, we figure out an incompatible conflict between metric learning and quantization learning. The metric loss penalizes the inter-class distances to push different classes unconstrained far away. Worse still, it tends to map the latent code deviate from ideal binarization point and generate severe ambiguity in the binarization process. Based on the minimum distance of the binary linear code, we creatively propose Hashing-guided Hinge Function (HHF) to avoid such conflict. In detail, the carefully-designed inflection point, which relies on the hash bit length and category numbers, is explicitly adopted to balance the metric term and quantization term. Such a modification prevents the network from falling into local metric optimal minima in deep hashing. Extensive experiments in CIFAR-10, CIFAR-100, ImageNet, and MS-COCO show that HHF consistently outperforms existing techniques, and is robust and flexible to transplant into other methods. Code is available at https://github.com/JerryXu0129/HHF.


翻译:然而,深神经网络(DNNS)提取的潜在代码在二进制过程中将不可避免地失去语义信息,从而损害检索的准确性,并使其具有挑战性。虽然许多现有方法都实行正规化,以缓解量化错误,但我们发现,在计量学习和量化学习之间存在着不相容的冲突。衡量损失惩罚了将不同阶级推向不受到限制的距离。更糟糕的是,它往往映射潜代代码偏离理想的二进制点,并在二进制进程中产生严重的模糊性。基于二进制线代码的最低距离,我们创造性地提议Hashing-指导 Hinge 函数(HHHHF)以避免这种冲突。详细说来,我们仔细设计了透析点,该点依靠粗长的长度和类别数字,明确用于平衡计量术语和量化术语。这样的修改使得网络无法在深的集成中跌落到本地指标最佳迷你。 CIRF-10, CIFAR-100, IMFAR-29, image-HMFAR-GVER-GMVSMVS/ 和MS-COFORFORMSDFSMS/FSDSDFS/FODFORDS/FLVS/FOVDRVDRVDRVDRVDRVDS/M/MVDRVOVS/MGVOVOVOVOVOV 和NSOFOVF/MGFGFGFGFDFDFGVDFGVDFDFDFDFDFDFGFGFGVDR/MS/MGVDFDFDFGVDFD/MS/MSMSMSMSMSMDFGFGVDFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFGFG

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
A Survey on Deep Hashing Methods
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2021年3月25日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
A Survey on Deep Hashing Methods
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2021年3月25日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员