Combinatorial Game Theory has also been called `additive game theory', whenever the analysis involves sums of independent game components. Such {\em disjunctive sums} invoke comparison between games, which allows abstract values to be assigned to them. However, there are rulesets with {\em entailing moves} that break the alternating play axiom and/or restrict the other player's options within the disjunctive sum components. These situations are exemplified in the literature by a ruleset such as {\sc nimstring}, a normal play variation of the classical children's game {\sc dots \& boxes}, and {\sc top~entails}, an elegant ruleset introduced in the classical work Winning Ways, by Berlekamp Conway and Guy. Such rulesets fall outside the scope of the established normal play theory. Here, we axiomatize normal play via two new terminating games, $\infty$ (Left wins) and $\overline\infty$ (Right wins), and a more general theory is achieved. We define {\em affine impartial}, which extends classical impartial games, and we analyze their algebra by extending the established Sprague-Grundy theory, with an accompanying minimum excluded rule. Solutions of {\sc nimstring} and {\sc top~entails} are given to illustrate the theory.
翻译:组合游戏理论也被称为“ 附加游戏理论 ” 。 当分析涉及独立游戏组件的总数时, 则使用游戏之间的比较, 允许将抽象的值分配给游戏。 但是, 有一些规则用 {em 导致移动} 打破交替游戏的正弦和/ 或限制其他玩家在脱节和组合组件中的选项。 这些情形在文献中被一个规则所示范, 例如 prsc nimpstring} 、 经典儿童游戏 {sc dots} 框} 的正常游戏变换, 和 ~sc 顶部 ~ 零售}, 由 Berlekamp Conway 和 Guy 推出的经典赢取方法中的优雅规则。 这些规则不属于既定的正常游戏理论的范围 。 这里, 我们通过两个新的结束游戏, $\ intfy (left winsin) 和 $\ overline\ infty $ ($stry) $ ( right wins), 和 lady the grodual prial codeal doal) 。 我们定义了它们最起码的理论, 和最起码的正正统的理论 。