Stochastic differential games have been used extensively to model agents' competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large $N$-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into $N$ sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an $\eps$-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.
翻译:例如,在金融业P2P借贷平台上,Fintech 行业的P2P借贷平台、系统风险银行系统和保险市场中,都广泛使用了软体差别游戏。最近提议的机器学习算法、深层次的虚构游戏,为找到大型玩家N$对称随机差异游戏[J. Han和R. Hu,数学和科学机器学习会议,第221-245页,PMLR,2020年]的Markovian Nash平衡提供了一个创新的高效工具。通过纳入假游戏的概念,算法将游戏分解成美元次优化问题,并同时反复确定每个玩家的最佳策略与深落后的随机差异方程式(BSDE)方法。在本文中,我们证明了深层虚构游戏(DFP)与真正的纳什平衡的趋同。我们还可以显示,基于DFP的战略形成了一个$\eps-Nash平衡。我们通过提出一种解调游戏的新办法,将算法概括了游戏的算法,并展示大型人口游戏在技术假设之外的经验趋同。