AdaBelief, one of the current best optimizers, demonstrates superior generalization ability compared to the popular Adam algorithm by viewing the exponential moving average of observed gradients. AdaBelief is theoretically appealing in that it has a data-dependent $O(\sqrt{T})$ regret bound when objective functions are convex, where $T$ is a time horizon. It remains however an open problem whether the convergence rate can be further improved without sacrificing its generalization ability. %on how to exploit strong convexity to further improve the convergence rate of AdaBelief. To this end, we make a first attempt in this work and design a novel optimization algorithm called FastAdaBelief that aims to exploit its strong convexity in order to achieve an even faster convergence rate. In particular, by adjusting the step size that better considers strong convexity and prevents fluctuation, our proposed FastAdaBelief demonstrates excellent generalization ability as well as superior convergence. As an important theoretical contribution, we prove that FastAdaBelief attains a data-dependant $O(\log T)$ regret bound, which is substantially lower than AdaBelief. On the empirical side, we validate our theoretical analysis with extensive experiments in both scenarios of strong and non-strong convexity on three popular baseline models. Experimental results are very encouraging: FastAdaBelief converges the quickest in comparison to all mainstream algorithms while maintaining an excellent generalization ability, in cases of both strong or non-strong convexity. FastAdaBelief is thus posited as a new benchmark model for the research community.


翻译:Adabelief 是目前最佳优化的Adabelief 之一, 通过查看观察到的梯度指数移动平均值, 展示了与流行的Adam 算法相比的超强概括化能力。 Adabelief 理论上具有吸引力, 因为它拥有一个依赖于数据的速率值( O) (sqrt{T}) 。 当客观功能是Convex时, $T美元是一个时间范围, 而当客观功能是Convex时, 美元是AdaBelief 时, 却对是否在不牺牲其概括化能力的情况下, 可以进一步提高趋同率。% 关于如何利用强大的粘合能力来进一步提高Adabelief 的趋同率。 为此, 我们首次尝试了这项工作, 设计了一个叫FastAdaBelief 的快速优化算法算法( Fast AdaAda), 目的是利用它来更快的趋同率率率率率率, 因此, 在快速的实验中, 我们的理论推理学推论分析中, 是一种非常坚定的推理的推论。

0
下载
关闭预览

相关内容

【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员