The use of external background knowledge can be beneficial for the task of matching schemas or ontologies automatically. In this paper, we exploit six general-purpose knowledge graphs as sources of background knowledge for the matching task. The background sources are evaluated by applying three different exploitation strategies. We find that explicit strategies still outperform latent ones and that the choice of the strategy has a greater impact on the final alignment than the actual background dataset on which the strategy is applied. While we could not identify a universally superior resource, BabelNet achieved consistently good results. Our best matcher configuration with BabelNet performs very competitively when compared to other matching systems even though no dataset-specific optimizations were made.
翻译:外部背景知识的使用可以有利于自动匹配系统或本体学。 在本文中, 我们利用六张通用知识图作为匹配任务的背景知识来源。 背景来源是通过应用三种不同的开发战略进行评估的。 我们发现, 明确的战略仍然优于潜在战略,并且战略的选择对最终匹配的影响大于战略应用的实际背景数据集。 虽然我们无法确定一个普遍优越的资源, BabelNet还是取得了一贯的良好成果。 我们与 BabelNet的最佳匹配配置与其他匹配系统相比,具有很强的竞争力,尽管没有做出特定数据集的优化。