Neural Radiance Fields (NeRFs) learn implicit representations of - typically static - environments from images. Our paper extends NeRFs to handle dynamic scenes in an online fashion. We propose ParticleNeRF that adapts to changes in the geometry of the environment as they occur, learning a new up-to-date representation every 350ms. ParticleNeRF can represent the current state of dynamic environments with much higher fidelity compared to other NeRF frameworks. To achieve this, we introduce a new particle-based parametric encoding, which allows the intermediate NeRF features -- now coupled to particles in space - to move with the dynamic geometry. This is possible by backpropagating the photometric reconstruction loss into the position of the particles. The position gradients are interpreted as particle velocities and integrated into positions using a position-based dynamics (PBS) physics system. Introducing PBS into the NeRF formulation allows us to add collision constraints to the particle motion and creates future opportunities to add other movement priors into the system, such as rigid and deformable body constraints. Videos can be found at https://sites.google.com/view/particlenerf.


翻译:神经辐射场(Neoral Radiance Fields) 从图像中学习隐含的 -- -- 通常是静态的 -- -- 环境。我们的论文扩展了 NeRFs, 以在线方式处理动态场景。 我们建议PaterNeRF, 适应环境几何变化, 每350米学习一个新的最新代表。 PelsNeRF 能够代表动态环境的现状, 与其他 NeRF 框架相比, 其真实性要高得多。 为了实现这一点, 我们引入了新的粒子参数编码, 使中间的 NeRF 特征 -- -- 现在与空间中的颗粒相伴 -- -- 能够与动态几何相移。 将光度重建损失反射到粒子的位置是可能的。 位置梯度被解释为粒子速度, 并纳入基于位置的动态物理系统。 将 PBS 引入 NERF 配制, 使我们能够在粒子运动中增加碰撞限制, 并创造未来机会, 将其他运动添加系统之前的动作, 如僵硬和变形体限制。 视频可以在 http://ssetglegles.gleglegleglegleges.

0
下载
关闭预览

相关内容

专知会员服务
72+阅读 · 2021年5月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员