Given any full rank lattice and a natural number N , we regard the point set given by the scaled lattice intersected with the unit square under the Lambert map to the unit sphere, and show that its spherical cap discrepancy is at most of order N , with leading coefficient given explicitly and depending on the lattice only. The proof is established using a lemma that bounds the amount of intersections of certain curves with fundamental domains that tile R^2 , and even allows for local perturbations of the lattice without affecting the bound, proving to be stable for numerical applications. A special case yields the smallest constant for the leading term of the cap discrepancy for deterministic algorithms up to date.
翻译:考虑到任何完全的挂牌和自然的编号N,我们把在兰伯特地图下与单位方形交叉的缩放板设定的点数与单位球体相交,并显示其球球帽差异大部分为N级,主要系数明确给出,仅取决于挂牌。 证据使用一个列马,将某些曲线与基本域的交叉点(tile R ⁇ 2 ), 甚至允许在不影响约束的情况下对挂牌进行局部扰动,并证明对数字应用来说是稳定的。 特例生成了迄今为止确定性算法上限差异前期最小的常数 。