A stochastic Galerkin formulation for a stochastic system of balanced or conservation laws may fail to preserve hyperbolicity of the original system. In this work, we develop hyperbolicity-preserving stochastic Galerkin formulation for the one-dimensional shallow water equations by carefully selecting the polynomial chaos expansion of the nonlinear $q^2/h$ term in terms of the polynomial chaos expansions of the conserved variables. In addition, in an arbitrary finite stochastic dimension, we establish a sufficient condition to guarantee hyperbolicity of the stochastic Galerkin system through a finite number of conditions at stochastic quadrature points. Further, we develop a well-balanced central-upwind scheme for the stochastic shallow water model and derive the associated hyperbolicty-preserving CFL-type condition. The performance of the developed method is illustrated on a number of challenging numerical tests.
翻译:平衡法或养护法的平衡法或养护法的随机系统加勒金配方可能无法保存原系统的超偏执性。 在这项工作中,我们为单维浅水方程开发超偏观保存随机高温配方,仔细选择非线性浅水方程式多盘混亂膨胀($q ⁇ 2/h),即被保护变量的多盘混亂扩张。此外,在一个任意的有限随机随机维度方面,我们建立了足够条件,通过随机二次水方位点的有限数量条件,保证高压加勒金系统的超偏执性。此外,我们为随机浅水模型制定了一种平衡的中风方案,并得出了相关的超单线性保存CFL型条件。我们开发的方法的性能通过若干具有挑战性的数字测试加以说明。