Two main families of node feature augmentation schemes have been explored for enhancing GNNs: random features and spectral positional encoding. Surprisingly, however, there is still no clear understanding of the relation between these two augmentation schemes. Here we propose a novel family of positional encoding schemes which draws a link between the above two approaches and improves over both. The new approach, named Random Feature Propagation (RFP), is inspired by the power iteration method and its generalizations. It concatenates several intermediate steps of an iterative algorithm for computing the dominant eigenvectors of a propagation matrix, starting from random node features. Notably, these propagation steps are based on graph-dependent propagation operators that can be either predefined or learned. We explore the theoretical and empirical benefits of RFP. First, we provide theoretical justifications for using random features, for incorporating early propagation steps, and for using multiple random initializations. Then, we empirically demonstrate that RFP significantly outperforms both spectral PE and random features in multiple node classification and graph classification benchmarks.
翻译:为加强GNN, 探索了节点特性增强计划的两个主要组: 随机特性和光谱位置编码。 但是,令人惊讶的是, 这两种增强计划之间的关系仍然缺乏明确的了解。 我们在这里建议建立一个位置编码计划的新式组合, 将上述两种方法联系起来, 并改进两者。 名为随机地貌特性增强计划( RFP) 的新方法是受动力循环法及其一般化的启发的启发。 它将从随机节点特性开始计算传播矩阵的主导性电子元体的迭接算法的若干中间步骤相加在一起。 值得注意的是, 这些传播步骤是以图表化的传播操作器为基础, 可以预先确定或学习。 我们探索RFP的理论和实验效益。 首先, 我们为随机特性的使用、 纳入早期传播步骤以及使用多个随机初始化提供了理论依据。 然后, 我们从经验上证明, RFP大大超越了多个节点分类和图表分类基准中的光谱 PE和随机特性。</s>