Dimension is an inherent bottleneck to some modern learning tasks, where optimization methods suffer from the size of the data. In this paper, we study non-isotropic distributions of data and develop tools that aim at reducing these dimensional costs by a dependency on an effective dimension rather than the ambient one. Based on non-asymptotic estimates of the metric entropy of ellipsoids -- that prove to generalize to infinite dimensions -- and on a chaining argument, our uniform concentration bounds involve an effective dimension instead of the global dimension, improving over existing results. We show the importance of taking advantage of non-isotropic properties in learning problems with the following applications: i) we improve state-of-the-art results in statistical preconditioning for communication-efficient distributed optimization, ii) we introduce a non-isotropic randomized smoothing for non-smooth optimization. Both applications cover a class of functions that encompasses empirical risk minization (ERM) for linear models.
翻译:维度是某些现代学习任务的内在瓶颈,在这些现代学习任务中,优化方法受数据大小的影响。在本文中,我们研究数据的非地球分布,并开发一些工具,通过依赖有效维度而不是环境维度来降低这些维度成本。根据对环球虫球球球球球球体的不被动估计,这些估计证明可以概括到无限维度 -- -- 在链条论的论据中,我们的统一集中界限涉及一个有效的维度,而不是全球维度,比现有结果有所改进。我们在以下应用的学习问题中表现出利用非地球特性的重要性:一)我们改进通信高效分布优化的统计先决条件方面的先进结果,二)我们引入非地球同步随机滑动的非地球光滑动,两种应用都涵盖包括线性模型的经验风险分解(ERM)在内的一系列功能。