Synthesizing interaction-involved human motions has been challenging due to the high complexity of 3D environments and the diversity of possible human behaviors within. We present LAMA, Locomotion-Action-MAnipulation, to synthesize natural and plausible long term human movements in complex indoor environments. The key motivation of LAMA is to build a unified framework to encompass a series of motions commonly observable in our daily lives, including locomotion, interactions with 3D scenes, and manipulations of 3D objects. LAMA is based on a reinforcement learning framework coupled with a motion matching algorithm to synthesize locomotion and scene interaction seamlessly under common constraints and collision avoidance handling. LAMA also exploits a motion editing framework via manifold learning to cover possible variations in interaction and manipulation motions. We quantitatively and qualitatively demonstrate that LAMA outperforms existing approaches in various challenging scenarios. Project webpage: https://lama-www.github.io/ .
翻译:由于三维环境的高度复杂性和人类内部可能行为的多样性,合成与互动有关的人类动议一直具有挑战性。我们介绍LAMA、Locomotion-Action-MAnipulation,以综合复杂的室内环境中自然和合理的长期人类运动。LAMA的主要动机是建立一个统一框架,以包括日常生活中常见的一系列运动,包括移动、与三维场景的互动和对三维天体的操纵。LAMA基于一个强化学习框架,加上一个运动匹配算法,以便在共同的限制和避免碰撞的处理下无缝地合成移动和场面互动。LAMA还利用一个运动编辑框架,通过多方面学习来涵盖互动和操纵运动方面可能的变化。我们从数量和质量上证明LAMA在各种具有挑战性的情况中超越了现有办法。项目网页:https://lama-www.github.io/。