We show that the shortest $s$-$t$ path problem has the overlap-gap property in (i) sparse $\mathbf{G}(n,p)$ graphs and (ii) complete graphs with i.i.d. Exponential edge weights. Furthermore, we demonstrate that in sparse $\mathbf{G}(n,p)$ graphs, shortest path is solved by $O(\log n)$-degree polynomial estimators, and a uniform approximate shortest path can be sampled in polynomial time. This constitutes the first example in which the overlap-gap property is not predictive of algorithmic intractability for a (non-algebraic) average-case optimization problem.
翻译:暂无翻译