We study the classic online bipartite matching problem with a twist: offline nodes are reusable any number of times. Every offline node $i$ becomes available $d$ steps after it was assigned to. Nothing better than a $0.5$-approximation, obtained by the trivial deterministic greedy algorithm, was known for this problem. We give the first approximation factor beating $0.5$, namely a $0.505$ approximation, by suitably adapting and interpreting the powerful technique of Online Correlated Selection.
翻译:我们研究经典的线上双方对齐问题和转折:离线节点可以重复使用多少次。 每一个离线节点在分配后可以使用美元。 最能做的莫过于通过微小的确定性贪婪算法获得的0.5美元的认可。 我们给出了第一个近似系数,即0.505美元近似值,通过适当调整和解释在线相关选择的强大技术,以抵消0.5美元,即0.505美元近似值。