In this paper we present a general framework for estimating regression models subject to a user-defined level of fairness. We enforce fairness as a model selection step in which we choose the value of a ridge penalty to control the effect of sensitive attributes. We then estimate the parameters of the model conditional on the chosen penalty value. Our proposal is mathematically simple, with a solution that is partly in closed form, and produces estimates of the regression coefficients that are intuitive to interpret as a function of the level of fairness. Furthermore, it is easily extended to generalised linear models, kernelised regression models and other penalties; and it can accommodate multiple definitions of fairness. We compare our approach with the regression model from Komiyama et al. (2018), which implements a provably-optimal linear regression model; and with the fair models from Zafar et al. (2019). We evaluate these approaches empirically on six different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy for the same level of fairness. In addition, we highlight a source of bias in the original experimental evaluation in Komiyama et al. (2018).
翻译:在本文中,我们提出了一个估计回归模型的一般框架,但须符合用户定义的公平程度。我们执行公平性,作为示范选择步骤,我们选择山脊罚款的价值,以控制敏感属性的影响。然后我们根据选定的惩罚值来估计模型的参数。我们的提案数学简单,部分以封闭形式提出解决办法,并对回归系数进行估算,这些系数的直观性可以解释为公平程度的函数。此外,它很容易扩展到一般的线性模型、内脏回归模型和其他处罚;它可以包含多种公平性定义。我们比较了我们的方法与Komiyama等人(2018年)的回归模型(2018年)的对比,后者采用了可调和最佳的线性回归模型;以及扎法尔等人(2019年)的公平模型。我们从经验上评价了这些方法,我们发现我们的提案为相同程度的公平性提供了更合适和更准确的预测性。此外,我们强调在最初的科米山等人(2018年)的实验性评估中存在偏见的来源。