Classification is a central problem for dynamical systems, in particular for families that arise in a wide range of topics, like substitution subshifts. It is important to be able to distinguish whether two such subshifts are isomorphic, but the existing invariants are not sufficient for this purpose. We first show that given two minimal substitution subshifts, there exists a computable constant $R$ such that any factor map between these subshifts (if any) is the composition of a factor map with a radius smaller than $R$ and some power of the shift map. Then we prove that it is decidable to check whether a given sliding block code is a factor map between two prescribed minimal substitution subshifts. As a consequence of these two results, we provide an algorithm that, given two minimal substitution subshifts, decides whether one is a factor of the other and, as a straightforward corollary, whether they are isomorphic.
翻译:对于动态系统来说,分类是一个中心问题,特别是对于在诸如替代子变换等广泛主题中产生的家庭来说,这是个中心问题。重要的是,要能够区分两个这样的次变换是否是非形态化的,但现有的变数并不足以达到这一目的。我们首先显示,如果有两个最低限度的替代子变换,则存在一个可计算不变的常数$(如果有的话),因此这些次变换之间的任何因数图都是一个要素图的构成,其半径小于1雷亚尔和变换图的某些功率。然后,我们证明,可以判断一个特定滑动区代码是否是两个规定的最低替代次变换之间的因数图。由于这两个结果,我们提供了一种算法,如果有两个最低限度的变换变换次,则决定其中之一是否是另一个因素,而作为直截的必然结果,它们是否是变形的。