We study an online revenue maximization problem where the consumers arrive i.i.d from some unknown distribution and purchase a bundle of products from the sellers. The classical approach generally assumes complete knowledge of the consumer utility functions, while recent works have been devoted to unknown linear utility functions. This paper focuses on the online posted-price model with unknown consumer distribution and unknown consumer utilities, given they are concave. Hence, the two questions to ask are i) when is the seller's online maximization problem concave, and ii) how to find the optimal pricing strategy for non-linear utilities. We answer the first question by imposing a third-order smoothness condition on the utilities. The second question is addressed by two algorithms, which we prove to exhibit the sub-linear regrets of $O(T^{\frac{2}{3}} (\log T)^{\frac{1}{3}})$ and $O(T^{\frac{1}{2}} (\log T)^{\frac{1}{2}})$ respectively.


翻译:我们研究的是消费者抵达的网上收入最大化问题,即消费者来自一些未知的销售品并从销售商那里购买一捆产品。古典方法一般假定完全了解消费者公用事业功能,而最近的作品则专门用于未知的线性公用事业功能。本文侧重于在线上公布的价格模式,消费者分布不明,消费公用事业也不为人所知。因此,要问的两个问题是:(一)卖方的网上最大化问题何时出现;(二)如何找到非线性公用事业的最佳定价战略。我们通过对公用事业实行三等平滑条件回答第一个问题。第二个问题由两种算法解决,我们证明这些算法分别显示了美元(T ⁇ frac{2 ⁇ 3 ⁇ 3 ⁇ 3 ⁇ 3美元)和美元(T ⁇ frac{1 ⁇ 2 ⁇ 2 ⁇ 2美元)的亚线性遗憾。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
0+阅读 · 2022年11月6日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员