Generative adversarial networks (GANs) have recently found applications in image editing. However, most GAN based image editing methods often require large scale datasets with semantic segmentation annotations for training, only provide high level control, or merely interpolate between different images. Here, we propose EditGAN, a novel method for high quality, high precision semantic image editing, allowing users to edit images by modifying their highly detailed part segmentation masks, e.g., drawing a new mask for the headlight of a car. EditGAN builds on a GAN framework that jointly models images and their semantic segmentations, requiring only a handful of labeled examples, making it a scalable tool for editing. Specifically, we embed an image into the GAN latent space and perform conditional latent code optimization according to the segmentation edit, which effectively also modifies the image. To amortize optimization, we find editing vectors in latent space that realize the edits. The framework allows us to learn an arbitrary number of editing vectors, which can then be directly applied on other images at interactive rates. We experimentally show that EditGAN can manipulate images with an unprecedented level of detail and freedom, while preserving full image quality.We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data. We demonstrate EditGAN on a wide variety of image types and quantitatively outperform several previous editing methods on standard editing benchmark tasks.


翻译:在图像编辑中最近发现了图像编辑中的应用。然而,大多数基于 GAN 的图像编辑方法往往需要大规模数据集,其中含有语义部分说明,仅提供高水平控制,或只是不同图像之间的插图。在这里,我们提议了EditGAN,这是高质量、高精度语义图像编辑的新颖方法,允许用户通过修改其高度详细的分割面罩来编辑图像,例如,为汽车头灯绘制一个新的遮罩。EditGAN建在一个GAN框架框架上,该框架联合模拟图像及其语义部分,只需要少数贴标签的示例,使它成为可缩放的编辑工具。具体地说,我们把图像嵌入GAN潜藏空间,并根据分解编辑编辑编辑编辑编辑的编辑编辑编辑修改进行有条件的潜在代码优化。为了调和优化,我们发现隐蔽空间中的编辑矢量是任意的。这个框架允许我们学习一个编辑矢量的数量,然后可以直接应用到其他图像上互动率。我们实验性地显示,将图像嵌入G 将图像与前例性A 详细程度合并。我们还可以在前的图像编辑中,我们对AAN 的编辑格式进行全面的编辑,同时在前的版本中,我们还可以的校订制图像中,我们还可以对一个前的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
6+阅读 · 2019年4月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年7月16日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
3+阅读 · 2018年2月12日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
6+阅读 · 2019年4月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员