Several randomization mechanisms for local differential privacy (LDP) (e.g., randomized response) are well-studied to improve the utility. However, recent studies show that LDP is generally vulnerable to malicious data providers in nature. Because a data collector has to estimate background data distribution only from already randomized data, malicious data providers can manipulate their output before sending, i.e., randomization would provide them plausible deniability. Attackers can skew the estimations effectively since they are calculated by normalizing with randomization probability defined in the LDP protocol, and can even control the estimations. In this paper, we show how we prevent malicious attackers from compromising LDP protocol. Our approach is to utilize a verifiable randomization mechanism. The data collector can verify the completeness of executing an agreed randomization mechanism for every data provider. Our proposed method completely protects the LDP protocol from output-manipulations, and significantly mitigates the expected damage from attacks. We do not assume any specific attacks, and it works effectively against general output-manipulation, and thus is more powerful than previously proposed countermeasures. We describe the secure version of three state-of-the-art LDP protocols and empirically show they cause acceptable overheads according to several parameters.


翻译:当地差异隐私(LDP)(例如随机响应)的若干随机机制(例如随机响应)已经很好地研究过,以改善其效用。然而,最近的研究表明,LDP一般在性质上易受恶意数据提供者的伤害。因为一个数据收集者只能从已经随机的数据中估计背景数据分布,恶意数据提供者可以在发送前操纵其输出,即随机化可以提供可信的可忽略性。攻击者可以通过使用LDP协议规定的随机概率进行正常计算,有效扭曲估计,甚至可以控制估计值。在本文中,我们展示了我们如何防止恶意攻击者破坏LDP协议。我们的做法是利用可核查的随机化机制。数据收集者可以核查每个数据提供者执行商定的随机化机制的完整性。我们提出的方法可以完全保护LDP协议不受产出操纵,并大大减轻袭击的预期损害。我们不承担任何具体的攻击,它有效打击一般产出管理,因此比先前提议的反措施更强大。我们描述了三个州级标准参数的可靠版本。我们描述了三个州级标准参数显示LDP。

0
下载
关闭预览

相关内容

【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
14+阅读 · 2021年1月31日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员