This paper presents a novel fingerprinting scheme for the Intellectual Property (IP) protection of Generative Adversarial Networks (GANs). Prior solutions for classification models adopt adversarial examples as the fingerprints, which can raise stealthiness and robustness problems when they are applied to the GAN models. Our scheme constructs a composite deep learning model from the target GAN and a classifier. Then we generate stealthy fingerprint samples from this composite model, and register them to the classifier for effective ownership verification. This scheme inspires three concrete methodologies to practically protect the modern GAN models. Theoretical analysis proves that these methods can satisfy different security requirements necessary for IP protection. We also conduct extensive experiments to show that our solutions outperform existing strategies in terms of stealthiness, functionality-preserving and unremovability.


翻译:本文介绍了知识产权保护基因反转网络(GANs)的新颖的指纹鉴定计划; 分类模型的先前解决办法采用对抗性例子作为指纹,当这些例子应用于GAN模型时,可能会引起隐形性和稳健性问题; 我们的计划从目标GAN和一个分类器中构建了一个综合的深层次学习模型; 然后我们从这一综合模型中生成隐形指纹样本,并将它们登记到分类器,以进行有效的所有权核查; 这个计划激发了三种具体的方法,以实际保护现代GAN模型。 理论分析证明这些方法可以满足知识产权保护所需的不同安全要求。 我们还进行了广泛的实验,以表明我们的解决方案在隐形性、功能保留和不可移动性方面超过了现有的战略。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月27日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员