Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object wise, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream application. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named Lang-SHAPE) to learn 3D part-wise affordance and grasping ability. We design a novel two-stage fine-grained robotic grasping network (named PIONEER), including a novel 3D part language grounding model, and a part-aware grasp pose detection model. To evaluate the effectiveness, we perform multi-level difficulty part language grounding grasping experiments and deploy our proposed model on a real robot. Results show our method achieves satisfactory performance and efficiency in reference identification, affordance inference, and 3D part-aware grasping. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape


翻译:机器人掌握机器人是机器人与环境互动的基本能力。 目前的方法侧重于如何在目标智慧下获得稳定可靠的掌握姿势, 而对于部分( 形状) 与精细捕捉和机器人支付能力相关的部分( 形状) 则很少研究与精细捕捉和机器人支付能力相关的部分( 形状) 。 部件可以被视为原子元素, 组成一个物体, 它包含丰富的语义知识, 并且与价格有很强的关联。 但是, 缺少一个大半智能的 3D 机器人数据集限制了部分代表学习和下游应用程序的开发。 在本文中, 我们提议了一个新的大型语言制导 Sahape glasPing 数据Et( 名为 Lang- SHAPEP), 以学习三维的局部负担和掌握能力。 我们设计了一个两级精细的机器人捕捉网络( 名为 PIONEER ), 包括一个新的 3D 部分语言定位定位模型, 以及一个部分觉察到的图像模型模型模型。 为了评估效果, 我们执行多层次的语言定位实验和在真正的机器人上部署我们提议的模型。 结果展示了我们的方法, 3号 和可以理解我们的数据 。

0
下载
关闭预览

相关内容

【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关VIP内容
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员