The transitive simultaneous conjugacy problem asks whether there exists a permutation $\tau \in S_n$ such that $b_j = \tau^{-1} a_j \tau$ holds for all $j = 1,2, \ldots, d$, where $a_1, a_2, \ldots, a_d$ and $b_1, b_2, \ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \log d / \log n + dn\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.
翻译:中转同时的共和性问题询问是否存在一个以美元为单位的超值 $\ tau =\ a_j =\ tau ⁇ -1} a_j\ tau$ $ $j= 1,\ ldots, d$, 其中$a_ 1, a_2, a_dots, a_d$ 和$b_1, b_2, b_dots, b_d$是按美元为单位的超值调整顺序排列的,每美元中美元产生一个以美元为单位的中转分组 $S_n$。 从70年中开始,人们知道问题可以用美元(dn% 2) 时间来解决。 80年末提出的运行时间为$(dn\log(dn) $) 的算法无法正确处理所有输入数据。 在本文件中,我们用美元(n2\ log d/\ log n+ dn$ 美元 的中转分组解决了中转同时的周期问题。