The transitive simultaneous conjugacy problem asks whether there exists a permutation $\tau \in S_n$ such that $b_j = \tau^{-1} a_j \tau$ holds for all $j = 1,2, \ldots, d$, where $a_1, a_2, \ldots, a_d$ and $b_1, b_2, \ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \log d / \log n + dn\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.


翻译:中转同时的共和性问题询问是否存在一个以美元为单位的超值 $\ tau =\ a_j =\ tau ⁇ -1} a_j\ tau$ $ $j= 1,\ ldots, d$, 其中$a_ 1, a_2, a_dots, a_d$ 和$b_1, b_2, b_dots, b_d$是按美元为单位的超值调整顺序排列的,每美元中美元产生一个以美元为单位的中转分组 $S_n$。 从70年中开始,人们知道问题可以用美元(dn% 2) 时间来解决。 80年末提出的运行时间为$(dn\log(dn) $) 的算法无法正确处理所有输入数据。 在本文件中,我们用美元(n2\ log d/\ log n+ dn$ 美元 的中转分组解决了中转同时的周期问题。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
0+阅读 · 2021年1月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
博客 | 机器学习中的数学基础(凸优化)
AI研习社
14+阅读 · 2018年12月16日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员