In this paper, we consider the uplink and downlink precoder design for two-user power-domain multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. We propose novel uplink and downlink precoding and decoding schemes that lower the decoding complexity at the receiver by decomposing the MIMO-NOMA channels of the users into multiple single-input single-output (SISO)-NOMA channels via simultaneous triangularization (ST) of the MIMO channels of the users and a low-complexity self-interference cancellation at the receiver. The proposed ST MIMO-NOMA schemes avoid channel inversion at transmitter and receiver and take advantage of the null spaces of the MIMO channels of the users, which is beneficial for the ergodic achievable rate performance. We characterize the maximum ergodic achievable rate regions of the proposed uplink and downlink ST MIMO-NOMA schemes, and compare them with respective upper bounds, baseline MIMO-NOMA precoding schemes, and orthogonal multiple access (OMA). Our results illustrate that the proposed schemes significantly outperform the considered baseline MIMO-NOMA precoding schemes and OMA, and have a small gap to the respective upper bounds for most channel conditions and user rates. Moreover, we show that a hybrid scheme, which performs time sharing between the proposed uplink and downlink ST MIMO-NOMA and single-user MIMO, can improve performance even further.


翻译:在本文中,我们考虑双用户动力-多投入-多输出-多输出-多输出-多输出-非正反调(NOMA)系统上行和下行前行编码设计;我们建议采用新型的上行和下行编码前行编码和解码计划,通过将IMO-NOMA的用户渠道分解成多个单一投入-单输出-NOMA的多渠道,同时将用户的MIMO渠道三角化(ST),并取消接收者低兼容性-多输出(MIMO-NOMA)的自我干预(NOMA)系统。 拟议的ST MIMO-NOMA系统避免在发报和接收者之间转换渠道,并利用IMO渠道的空隙来降低接收者的解码复杂性。 我们把拟议上行和下行的双轨率区域分为多个单一单一投入-单一输出-单输出(SISO)-NOMA(SISO)-NOMA)系统下行,并将它们与各自的双轨、IMO-NOMA(IMO)前的基线-多存(OMA)系统上和(O-MIMO-MMA)系统上下行之间拟议中的大部分基线和多存(OMA)系统进行大幅的升级。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
已删除
将门创投
5+阅读 · 2019年5月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
相关资讯
已删除
将门创投
5+阅读 · 2019年5月5日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员