Suppose that we have a method which estimates the conditional probabilities of some unknown stochastic source and we use it to guess which of the outcomes will happen. We want to make a correct guess as often as it is possible. What estimators are good for this? In this work, we consider estimators given by a familiar notion of universal coding for stationary ergodic measures, while working in the framework of algorithmic randomness, i.e, we are particularly interested in prediction of Martin-L\"of random points. We outline the general theory and exhibit some counterexamples. Completing a result of Ryabko from 2009 we also show that universal probability measure in the sense of universal coding induces a universal predictor in the prequential sense. Surprisingly, this implication holds true provided the universal measure does not ascribe too low conditional probabilities to individual symbols. As an example, we show that the Prediction by Partial Matching (PPM) measure satisfies this requirement with a large reserve.
翻译:假设我们有一个方法来估计某些未知随机源的有条件概率, 我们用这个方法来猜测结果会发生。 我们想尽可能经常地进行正确的猜测。 估计者对此有用吗? 在这项工作中, 我们考虑一个常识概念给出的用于固定的随机测量的通用编码估计值, 同时在算法随机性的框架内工作, 也就是说, 我们特别有兴趣预测随机点的马丁- L\" 。 我们概述了一般理论, 并展示了一些反例。 完成2009年的Ryabko 的结果, 我们还表明, 通用编码意义上的普遍概率测量引出了一种通用的预言。 令人惊讶的是, 这个假设是真实的, 只要通用计量不给单个符号设定太低的有条件概率。 例如, 我们显示, 部分匹配( PPM) 的预测性能用一个很大的储备来满足这一要求 。