In this paper we prove the first quantitative convergence rates for the graph infinity Laplace equation for length scales at the connectivity threshold. In the graph-based semi-supervised learning community this equation is also known as Lipschitz learning. The graph infinity Laplace equation is characterized by the metric on the underlying space, and convergence rates follow from convergence rates for graph distances. At the connectivity threshold, this problem is related to Euclidean first passage percolation, which is concerned with the Euclidean distance function $d_{h}(x,y)$ on a homogeneous Poisson point process on $\mathbb{R}^d$, where admissible paths have step size at most $h>0$. Using a suitable regularization of the distance function and subadditivity we prove that ${d_{h_s}(0,se_1)}/ s \to \sigma$ as $s\to\infty$ almost surely where $\sigma \geq 1$ is a dimensional constant and $h_s\gtrsim \log(s)^\frac{1}{d}$. A convergence rate is not available due to a lack of approximate superadditivity when $h_s\to \infty$. Instead, we prove convergence rates for the ratio $\frac{d_{h}(0,se_1)}{d_{h}(0,2se_1)}\to \frac{1}{2}$ when $h$ is frozen and does not depend on $s$. Combining this with the techniques that we developed in (Bungert, Calder, Roith, IMA Journal of Numerical Analysis, 2022), we show that this notion of ratio convergence is sufficient to establish uniform convergence rates for solutions of the graph infinity Laplace equation at percolation length scales.


翻译:在本文中, 我们证明了图形的最小性 Laplace 方程式在连接临界值的长度比例上的首次量化趋同率。 在基于图形的半监督的半监督学习社区中, 这个方程式也被称为 Lipschitz 学习。 图形的最小性拉place方程式的特征是基础空间的衡量标准, 以及图形距离的趋同率。 在连接临界值中, 这个问题与 Euclidean 第一次通道穿透率有关, 与 Euclidean 距离函数 $d ⁇ h} (x,y) 有关。 在 $\ geq} (x,y) 在基于图形的 Poisson点进程, $\thbb{R ⁇ d$, 允许路径的步数大小最多为$>0.0。 使用适当的远程函数和子相加宽度的组合率, 我们证明美元==========lational =xx 美元, i========xxxxxxxxxxlal=xxxxx =xxxxxxxxxxxxxxxxxxxxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员