Humans constantly restructure knowledge to use it more efficiently. Our goal is to give a machine learning system similar abilities so that it can learn more efficiently. We introduce the \textit{knowledge refactoring} problem, where the goal is to restructure a learner's knowledge base to reduce its size and to minimise redundancy in it. We focus on inductive logic programming, where the knowledge base is a logic program. We introduce Knorf, a system which solves the refactoring problem using constraint optimisation. We evaluate our approach on two program induction domains: real-world string transformations and building Lego structures. Our experiments show that learning from refactored knowledge can improve predictive accuracies fourfold and reduce learning times by half.
翻译:人类不断重组知识,以便更高效地使用知识。 我们的目标是给机器学习系统类似的能力, 以便更高效地学习。 我们引入了“ 知识重组”问题, 目标是重组学习者的知识库, 以缩小其规模, 并最大限度地减少其中的冗余。 我们侧重于感化逻辑程序, 知识基础是一个逻辑程序。 我们引入了 Knorf, 该系统用限制优化解决再影响问题。 我们评估了我们两个程序入门领域的方法: 真实世界的弦转换和构建乐高结构。 我们的实验显示, 从重新构思的知识中学习可以提高预测的精度四倍, 并将学习时间减半 。