Deep neural networks (DNNs) with noisy weights, which we refer to as noisy neural networks (NoisyNNs), arise from the training and inference of DNNs in the presence of noise. NoisyNNs emerge in many new applications, including the wireless transmission of DNNs, the efficient deployment or storage of DNNs in analog devices, and the truncation or quantization of DNN weights. This paper studies a fundamental problem of NoisyNNs: how to reconstruct the DNN weights from their noisy manifestations. While all prior works relied on the maximum likelihood (ML) estimation, this paper puts forth a denoising approach to reconstruct DNNs with the aim of maximizing the inference accuracy of the reconstructed models. The superiority of our denoiser is rigorously proven in two small-scale problems, wherein we consider a quadratic neural network function and a shallow feedforward neural network, respectively. When applied to advanced learning tasks with modern DNN architectures, our denoiser exhibits significantly better performance than the ML estimator. Consider the average test accuracy of the denoised DNN model versus the weight variance to noise power ratio (WNR) performance. When denoising a noisy ResNet34 model arising from noisy inference, our denoiser outperforms ML estimation by up to 4.1 dB to achieve a test accuracy of 60%.When denoising a noisy ResNet18 model arising from noisy training, our denoiser outperforms ML estimation by 13.4 dB and 8.3 dB to achieve test accuracies of 60% and 80%, respectively.


翻译:具有噪音重力的深神经网络(DNN),我们称其为噪音神经网络(NoisyNNN),来自对DNN的培训和推断,来自在噪音面前对DNN的培训和推断。NoisyNNN在许多新的应用中出现,包括DNN的无线传输,DNN在模拟装置中的有效部署或储存,DNN重量的脱轨或四分化。本文研究NoisyNNNs的一个根本问题:如何将DNNN的重量从它们的噪音表现中重建。虽然以前的所有工作都依赖于最大可能性(ML)估算,但本文提出了一个重建DNNNNNNN的淡化方法,目的是最大限度地提高已重建模型的准确性。我们的脱轨者优势在两个小规模问题中得到了严格证明,我们分别考虑一个二次神经网络功能的功能和浅浅质的营养网络。当应用现代DNNNNF结构的高级学习任务时,我们的解名化工作表现比ML的高度要好得多,从ML的精确度比ML的准确度比MRRRM的温度, 测试比我们的40, 的温度比的温度比的温度变的更高。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月7日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
13+阅读 · 2020年8月3日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员